for *O. fulgida* and the importance of snakes as nest predators of antbirds (Roper and Goldstein 1997, *J. Avian Biol. 28*:111–116), to the best of our knowledge this is the first record of *O. fulgida* consuming a bird from the large and widespread Neotropical bird family Thamnophilidae.

We thank Vitor Piacentini, Wagner Nogueira, and Kurazo Aguiar for indentifying the bird species.

ANDERSON SILVA PENA (e-mail: soldado0002@hotmail.com) and **WALLACE SILVA NASCIMENTO**, Laboratório de Ciências Biológicas, Campus Binacional de Oiapoque (e-mail: wallacesnbio@gmail.com); **JACKSON CLEITON SOUSA** (e-mail: jacksonclitonbio22@gmail.com) and **CARLOS EDUARDO COSTA-CAMPOS**, Laboratório de Herpetologia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Campus Marco Zero, 68.903-419, Macapá, AP, Brazil (e-mail: eduardocampos@unifap.br).

PANTHEROPHIS ALLEGHANIENSIS (Eastern Ratsnake). *DIET*. North American ratsnakes are known to feed primarily on lizards, birds and their eggs, and a variety of small mammals, including bats (Ernst and Ernst 2003, *Snakes of the U.S. and Canada*. Smithsonian Institution Press, Washington, DC. 688 pp.). Recently, Hastings (2010, *Herpetol. Rev. 41*:371) reported the first evidence of a *Pantherophis alleghaniensis* feeding on a bat of the genus

Lasiusurus, *L. intermedium* (Northern Yellow Bat). Here, we report on *P. alleghaniensis* preying on another bat of the genus Lasiusurus.

On 28 April 2016 at 0829 h, we observed a juvenile (total length ca. 45 cm) *P. alleghaniensis* writhing on the ground beneath a *Quercus virginiana* (Live Oak) along the edge of a dirt road on the South Island portion of the Tom Yawkey Wildlife Center in Georgetown County, South Carolina (33.22683°N, 079.20440°W, WGS 84). Upon closer inspection, the snake was observed to be actively constricting an adult *L. borealis* (Eastern Red Bat; Fig. 1). At this time, the bat was still alive, though only slightly moving, and its wings were extended. It is unknown whether the snake attacked the bat in the tree above and both fell to the ground in the ensuing struggle, or if the bat fell from the tree or air and then was encountered by the snake on the ground; we believe the former is the more likely scenario. At 0926 h, we returned to find the snake swallowing the bat headfirst. At this point, the bat’s wings were folded, but it appeared the protruding thumbs were preventing the snake from swallowing the rest of the body. We left the area again and returned at 1200 h to find the snake done and the bat dead but still present. To our knowledge, this is the first record of *P. alleghaniensis* preying on *L. borealis*. However, because North American ratsnakes are known to feed on multiple bat species (Ernst and Ernst, *op. cit.*), predation on by *P. alleghaniensis* on *L. borealis* is not unexpected.

We thank Susan Loeb and Mary Bunch for identifying the bat. Voucher photographs of the snake and bat are archived in the Campbell Museum, Clemson University, Clemson, South Carolina (CUCS 2963).

ZACK J. SIMPSON, JAMIE DOZIER, Tom Yawkey Wildlife Center, South Carolina Department of Natural Resources, 1 Yawkey Way South, Georgetown, South Carolina 29440, USA; **STEVEN G. PLATT**, Wildlife Conservation Society, Myanmar Program, Office Block C-1, Aye Yeek Mon 1st Street, Hlaing Township, Yangon, Myanmar; **STANLEE M. MILLER**, Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, South Carolina 29634, USA; **THOMAS R. RAINWATER**, Tom Yawkey Wildlife Center & Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, P.O. Box 596, Georgetown, South Carolina 29440, USA (e-mail: trrainwater@gmail.com).

Fig. 1. A) Adult female *Philodryas patagoniensis* with a dead nesting *Cinclodes pabsti* (Long-tailed Cinclodes) that it was attempting to consume; note the lump in the snake’s body (B). Necropsy of the *P. patagoniensis* (C and D) revealed another nesting in the snake’s stomach.

During a survey of reproductive biology of *C. pabsti*, on 18 December 2008, JIZ and NMZ found an adult female *P. patagoniensis* (total length = 96.4 cm; tail length = 12.7 cm; 401 g) preying on nestlings of *C. pabsti* in grassland habitat in the municipality of São José dos Ausentes, Rio Grande do Sul, Brazil (28.3351’S, 49.4601’W). WGS 84; elev. 1284 m). The nest was inside a cavity located at 94 cm from the ground, 128 cm from the top of a roadside embankment. The nestlings were ca. eight days old and had been seen in the nest two days before. When the snake was noted (Fig. 1), it was on the ground, holding one of the young birds in its mouth. Another young bird had already been swallowed by the snake, as indicated by a lump in its body. We collected the snake and during the necropsy we found the second nestling in the snake’s stomach. No other foods items were identified within the snake’s gut. This is the first confirmed record of *C. pabsti* in the diet of *P. patagoniensis*, and supports the idea that *P. patagoniensis* is an opportunistic predator.

We are grateful to the Universidade do Extremo Sul Catarinense and Fundação de Amparo à Pesquisa do Estado de Santa Catarina for the financial support.

JAIRO JOSÉ ZOCCHI, Universidade do Extremo Sul Catarinense, Laboratório de Ecologia de Paisagem e de Vertebrados, Programa de Pós-Graduação em Ciências Ambientais, Av. Universitária, 1105, Criciúma, Santa Catarina, Brazil (e-mail: jz@unesc.net); **NICOLAS MAGAGNIMI ZOCCHI,** Universidade do Extremo Sul Catarinense, Curso de Direito, Av. Universitária, 1105, Criciúma, Santa Catarina, Brazil; **FERNANDO CARVALHO,** Universidade do Extremo Sul Catarinense, Laboratório de Ecologia de Paisagem e de Vertebrados, Programa de Pós-Graduação em Ciências Ambientais, Av. Universitária, 1105, Criciúma, Santa Catarina, Brazil; **RODRIGO ÁVILA MENDONÇA,** Universidade do Sul de Santa Catarina, Grupo de Estudo em Zoologia e Ecologia de Vertebrados, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, Brazil; **KAROLINE CERON; POLIANA BERNARDO PERES,** Universidade do Extremo Sul Catarinense, Laboratório de Ecologia de Paisagem e de Vertebrados, Programa de Pós-Graduação em Ciências Ambientais, Av. Universitária, 1105, Criciúma, Santa Catarina, Brazil; **ARIOVALDO PEREIRA DA CRUZ NETO,** Universidade Estadual Paulista, Departamento de Zoologia, Av. 24-A, 1515, Rio Claro, SP, Brazil.

PLATYCEPHUS ROGERI (Roger’s Racer). ENDOPARASITES. *Platyceps rogeri* occurs in Libya, Egypt, Israel, Jordan, Lebanon, Syria, Iraq, and Saudi Arabia (Bar and Haimovitch 2011. A Field Guide to Reptiles and Amphibians of Israel. Pazhar Ltd., Herzliya, Israel. 246 pp.). It is mainly diurnal and feeds on lizards and some small mammals (Bar and Haimovitch, op. cit.). We know of no previous reports of helmints in *P. rogeri*. In this note we establish the initial helmint list for *P. rogeri*.

Three *P. rogeri* from Israel, deposited in the Steinhardt Museum of Natural History, TAUM, Tel-Aviv, Israel as TAUM 8619, (SVL = 393 mm) collected June 1969 at Nahal Zapa, Central Negev Region Israel (31.07°N, 35.19°E; WGS 84); TAUM 11229, (SVL = 470 mm) collected August 1976 at Ein Yotvata, Arava Valley Region, Israel (28.88°N, 35.04°E; WGS 84); and TAUM 16116, (SVL = 390 mm) collected January 2011 at Keren El Hajar, Yehuda Desert Region, Israel (31.653°N, 35.338°E; WGS 84) were examined. The body cavity was opened through a mid-ventral incision and the coelomic cavities were examined for helminths. Sesame seed-shaped helmints were found in each *P. rogeri*: 5 in TAUM 8619, 18 in TAUM 11229, and 10 in TAUM 16116. They were cleared in lactophenol, placed on a microscope slide, cover slipped, studied under a compound microscope and utilizing Petrochenko (1971. Acanthocephala of Domestic and Wild Animals, Vol. 1. Keter Press, Jerusalem. 465 pp.) identified as acanthocephalan cystacanths. We have assigned the cystacanths from TAUM 11229 to *Centrorhynchus* sp. because the elongate proboscis is divided into two parts, the anterior part with developed hooks and the posterior part with spine-like hooks. We have assigned the cystacanths from TAUM 8619 and TAUM 16116 to *Oligacanthorhynchus* sp. because they are somewhat annulated and possess a short cylindrical proboscis with hooks in spiral rows. Voucher cystacanths were deposited in the Harold W. Manter Laboratory (HWML), University of Nebraska, Lincoln, USA as: TAUM 8619 = HWML 99993; TAUM 11229 = HWML 99984; TAUM 16116 = HWML 99995.

Snakes likely act as paratenic (transport) hosts for acanthocephalan cystacanths as no further development occurs until the snake is eaten by a final (definitive) host. *Centrorhynchus* sp. cystacanths and *Oligacanthorhynchus* sp. cystacanths in *P. rogeri* are new host records.

We thank Shai Meiri (TAUM) for permission to examine *P. karelinii* and the National Collections of Natural History at Tel Aviv University for providing the *P. karelinii* to examine.

STEPHEN R. GOLDBERG, Whittier College, Department of Biology, Whittier, California 90608, USA (e-mail: sgoldberg@whittier.edu); **CHARLES R. BURSEY,** Pennsylvania State University, Shenango Campus, Department of Biology, Sharon, Pennsylvania 16146, USA (e-mail: cxb13@psu.edu); **RACHEL SCHWARZ,** Tel-Aviv University, Department of Zoology, Tel Aviv 6997801, Israel (e-mail: rachel.schwarz13@gmail.com); **SIMON JAMISON,** Tel-Aviv University, Department of Zoology, Tel Aviv 6997801, Israel (e-mail: simonjamison@mail.tau.ac.il); **EREZ MAZA,** Tel-Aviv University, Steinhardt Museum of Natural History, Tel Aviv 6997801, Israel (e-mail: mazaerez@post.tau.ac.il).

Herpetological Review 48(1), 2017